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Combustion instabilities arise from interactions between the acoustic field and unsteady heat release within a

confined chamber. In the present study, a three-dimensional acoustic model is developed to explore the effect of

azimuthally nonuniform distribution of heat release on longitudinal combustion instabilities. The governing

equations are solved bymeans of a spectral collocationmethod with domain decomposition to accommodate the flow

discontinuities across the flame. It is shown that the circumferential nonuniformity in heat release has only amarginal

effect on instability frequency but may cause a potentially significant decrease in the growth rate. For some

combinations of flow parameters, a high degree of heat-release asymmetry may qualitatively change the stability

characteristics of the combustor,with a sign changeof the growth rate. It is found that vorticitywaves producedby the

azimuthally nonuniform heat release may contribute damping to the thermoacoustic system.

Nomenclature

Cp = constant pressure specific heat capacity
CV = constant volume specific heat capacity
c = speed of sound

k = �T02∕ �T01, ratio of mean stagnation temperatures
on either side of heat-release plane

Nx, Nr, Nθ = numbers of collocation points in axial, radial, and
circumferential directions

n = interaction index (gain) for n − τ combustion
response model

�_Q = time-averaged rate of heat release per unit area
due to combustion

_Q 0 = fluctuating rate of heat release per unit area due to
combustion

Rp, Ru = complex pressure and velocity-coupled combus-
tion response functions

x, r, θ = axial, radial, and circumferential coordinate
variables

α = growth rate (imaginary part of Ω)
σ = amplitude of sinusoidal circumferential distribu-

tion of combustion response parameters
τ = time delay for n − τ combustion response model
Ω = complex eigenfrequency
ω = angular frequency (real part of Ω)

I. Introduction

C OMBUSTION instabilities present a major challenge to the
development and operation of many propulsion systems,

including solid rocket motors [1,2], liquid rocket engines [3–5],
ramjets and scramjets [6–9], and gas turbine combustors [10,11]. They

result from the energy exchange between the acoustic field and
transient combustion response and manifest as finite-amplitude flow
oscillations. The ensuing pressure excursions are implicated in a
multitude of deleterious effects, including reduced operating lifetime
of engine components and, in extreme cases, catastrophic failure, due
to vibration and enhanced heat transfer to engine hardware. It is of
paramount importance to establish thorough understanding of the
physiochemical mechanisms responsible for and operating conditions
conducive to the initiation and sustainment of combustion instabilities.
Recent research, comprising robust analytical, experimental, and
numerical studies, has shed light on someaspects of thesemechanisms,
but additional work is needed, especially on problems involving
complex geometries and flowfields.
Generally, combustion instabilities are initiated when a random

perturbation in intrinsic combustor noise is amplified by linear
mechanisms. The growth of oscillations is limited by nonlinear
processes, and eventually the unsteady pressure field saturates at some
limit cycle amplitude.Oscillations typically occur at one ormore of the
natural acoustic frequencies of the combustor, which suggests that the
unsteady pressure field may be constructed as a synthesis of classical
mode shapes. Culick [12,13] and Culick and Yang [14,15] used a
Galerkin approach based on this principle to map stability boundaries
and determine the temporal evolution ofmodal amplitudes for a variety
of model combustors. It has also been thought possible to excite a
linearly stable system to limit-cycle oscillations by a finite-amplitude
pressure pulse, a phenomenon known as pulse-triggered instability.
This problem has been quantitatively addressed in the context of solid
rocket motors [16,17]. Yang et al. [16] found that nonlinear gas
dynamics alone does not provide a mechanism for triggering a finite
disturbance to limit cycles in a linearly stable system. In order for
triggering to occur, nonlinear combustion responsemust be present. To
this end, Wicker et al. [17] extended the work of Yang et al. [16] to
study the effect of several functional formsof combustion response and
found that only certain forms allowed for triggering to take place. In
particular, it is not possible to trigger a finite disturbance toa stable limit
cycle if the combustion response is proportional to any quadratic
function of acoustic pressure and velocity. Triggering, however, may
occur if the response is proportional to the magnitude of the acoustic
velocity. More recently, Flandro et al. [18] explored the existence of
triggering by reference to a large body of experimental data for solid-
propellant rocket motors. They suggested that manymotors thought to
exhibit triggeringwere in fact intrinsically linearly unstable but that the
instabilities had vanishingly small growth rates. Regardless, it is
evident that the problem of linear stability is the more fundamental
issue and therefore is the focus of this study.
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According to Rayleigh’s criterion [19,20], fluctuating heat release
will drive acoustic oscillations, provided that the magnitude of the
relative phase between heat release and unsteady pressure is less than
90 deg. If the energy transferred to the acoustic field is greater than the
energy radiated or convected out of the domain and dissipatedwithin it
by viscous processes, then the amplitude of oscillations will grow, and
the system is deemed linearly unstable. The fluctuating heat release, in
turn, depends on acoustic and flow perturbations. Several driving
mechanisms, including harmonic acoustic forcing, equivalence-ratio
oscillations, fuel flow-rate oscillations, unsteady mixing and phase-
change processes, vortex shedding, and flame front dynamics have
been identified as potential contributors to oscillatory heat release [11].
The present work dealswith the interaction among acoustic, vortical,

and entropy disturbances and their collective coupling with unsteady
heat release. Vortical and entropy disturbances are often excluded from
combustion instability analyses for the sake of analytical tractability, but
this omits critical physics. For example, entropy disturbances produced
by unsteady combustion will generate upstream propagating acoustic
waves upon acceleration through a field of nonuniform mean velocity
such as a nozzle [21,22]. This phenomenon is potentially problematic
because the resulting acoustic waves may further perturb the com-
bustion process and thus cause an otherwise stable system to become
unstable. Studies demonstrating the critical nature of this coupling can
be found in [23–25]. Additionally, even assuming the acoustic medium
to be free of inhomogeneities such as mean temperature gradients,
acoustic and entropy disturbances are known to couple in the presence
of nonuniform mean flow. Vortical disturbances may also have a
significant effect on the stability of a combustor in some cases. The
recent investigation by Li and Sun [26] of an annular combustor with a
compact flame indicated that, for purely azimuthal instabilities, the
generation of vorticitywaves accounts for significant acoustic damping.
Another aspect of the instability problem that does not seem to have

received much systematic treatment in the literature is the azimuthal
distribution of heat release. In real systems, perfect axisymmetry is not
guaranteed. Annular gas turbines, liquid rocket engines, and other
systems in which multiple discrete flame stabilization sites are distri-
buted azimuthally may experience nonuniformities in the distributions
of flow parameters and heat release either by design or through oper-
ational failure. For example, in many combustors, the spatial distribu-
tion of fuel injection is nonuniform, and this leads to azimuthal varia-
tions in flame geometry (and therefore heat-release rate). Alternatively,
when all injection sites are nominally identical, local flame burnout
during operation means that the heat release can no longer be even
approximately axisymmetric. Circumferential variations in heat release
and temperaturemay also arise in single-flame combustors inwhich the
flame exhibits a high degree of asymmetry due to, for example,
asymmetricmean flow [27]. The effects of such nonuniformities are not
immediately obvious but might include preferential acoustic mode
excitation or damping and thus may have an impact on the operational
safety margins of the device. Based on these considerations, an exami-
nation of the effects of azimuthal nonuniformities of the flowfield and
heat release represents a practical extension of existing theories. An
earlier investigation of the authors [28] considered the effects of a
nonuniform azimuthal distribution on purely longitudinal acoustic
motions in a model combustor. The flame in that study, however, was
not assumed to be acoustically compact in the axial direction. A clear
study of the coupling between the circumferential distribution of heat
release and the generation of entropy and vorticity waves was thus
rendered difficult.
The key purpose of this work is to systematically investigate the

effects on acoustic stability of 1) coupling with vortical and entropic
motions, and 2) circumferential nonuniformities in heat release. A
theoretical model based on the inviscid equations of motion is
developed and used to study the stability characteristics of a cylindrical
combustor with a planar flame. The formulation for the oscillatory
flowfield is solved bymeans of a spectral collocationmethod, inwhich
the solution is expressed as aweighted superposition of basis functions
appropriate to the geometry and boundary conditions. The result is
required to satisfy the differential equations exactly at certain colloca-
tionpointswithin the computational domain.Adomaindecomposition
technique is used to accommodate the discontinuities in flow variables

across the flame. Because the flame dynamics are not explicitly
computed as part of the study, a velocity-coupled combustion response
function is employed as a specific example to close the formulation for
flow oscillations and unsteady heat release.

II. Theoretical Model

Figure 1 shows the physical configuration of concern: a cylindrical
duct containing a planar flame separating the upstream and
downstream regions.
The formulation begins with the conservation equations of mass,

momentum, and energy for the gases within the chamber. In the
absence of viscous and external forces, they take the following forms:

∂ρ
∂t

� ∇ · �ρu� � 0 (1)

ρ
du

dt
� ∇p � 0 (2)

ρT
ds

dt
� q�r; t� (3)

where ρ is the density, p is the pressure, u is the velocity, s is the
entropy, T is the temperature, and q is the heat release per unit
volume. For a perfect gas,

p � RgρT (4)

where Rg � Cp − Cv is the gas constant, and Cp and Cv are specific
heats at constant pressure and volume, respectively. The total
differential of density is

dρ � ∂ρ
∂p

����
s

dp� ∂ρ
∂s

����
p

ds (5)

With the application of Eq. (4), this can be written as

ds � Cp

ρc2
dp −

Cp

ρ
dρ (6)

where c is the speed of sound. Substitution of Eq. (6) into Eq. (3)
results in

dp

dt
− c2

dρ

dt
� �γ − 1�q�r; t� (7)

where γ � Cp∕Cv is the ratio of specific heats. Each variable can be
decomposed into a mean (denoted by overbar –) and a small
perturbation quantity, i.e.,

u�r; t� � �u�r� � u 0�r; t�
ρ�r; t� � �ρ�r� � ρ 0�r; t�
p�r; t� � �p�r� � p 0�r; t�
q̂�r; t� � �q�r� � q 0�r; t� (8)

Fig. 1 Chamber geometry for model duct, including planar flame.
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Hence, from Eqs. (1), (2), and (7), the linearized equations for the

perturbations are

∂ρ 0

∂t
� ∇ · ��ρu 0� � ∇ · �ρ 0 �u� � 0 (9)

�ρ
∂u0

∂t
�ρ0

∂ �u
∂t

� �ρ �u ·∇u0� �ρu0 ·∇ �u�ρ0 �u ·∇ �u�∇p0 �0 (10)

∂p 0

∂t
� �u · ∇p 0 � u 0 · ∇ �p − �c2

∂ρ 0

∂t
−
γ

�ρ
p 0 ∂�ρ

∂t
� �c2

�ρ
ρ 0 ∂�ρ

∂t
− �c2 �u · ∇ρ 0

− �c2u 0 · ∇�ρ −
γ

�ρ
p 0 �u · ∇�ρ� �c2

�ρ
ρ 0 �u · ∇�ρ � �γ − 1�q (11)

We assume the perturbations to be time harmonic, so that

ρ 0�r; t� � ρ̂�r�e−iΩt
p 0�r; t� � p̂�r�e−iΩt
u 0�r; t� � û�r�e−iΩt
q 0�r; t� � q̂�r�e−iΩt (12)

Here, the overhat denotes a complex function of spatial

coordinates. The characteristic modal frequency Ω is also complex:

Ω � ω� iα (13)

where i is the imaginary unit. The real part ω represents the radial

frequency of oscillation, and the imaginary part α is the growth

constant. Assuming that the mean quantities are steady with time,

Eqs. (9–11) reduce to

−iΩρ̂� ∇ · �ρ̂ �u� � ∇ · ��ρ û� � 0 (14)

ρ̂ �u · ∇ �u − iΩ�ρ û��ρ �u · ∇û� �ρ û · ∇ �u� ∇p̂ � 0 (15)

�
iΩ �c2 � �c2

�ρ
�u · ∇�ρ

�
ρ̂ − �c2 �u · ∇ρ̂� û · ∇ �p − �c2û · ∇�ρ

�
�
−iΩ −

γ

�ρ
�u · ∇�ρ

�
p̂� �u · ∇p̂ � �γ − 1�q̂ (16)

Expansion of the equations in cylindrical coordinates produces

A1ρ̂�A2

∂ρ̂
∂x

�A3

∂ûr
∂r

�A4

∂ûθ
∂θ

�A5

∂ûx
∂x

�A6ûr�A7ûθ�A8ûx�0

(17)

B1ûr � B2

∂ûr
∂x

� B3

∂p̂
∂r

� 0 (18)

C1ûθ � C2

∂ûθ
∂x

� C3

∂p̂
∂θ

� 0 (19)

D1ρ̂�D2ûx �D3

∂ûx
∂x

�D4ûr �D5ûθ �D6

∂p̂
∂x

� 0 (20)

E1ρ̂� E2

∂ρ̂
∂x

� E3ûr � E4ûθ � E5ûx � E6p̂� E7

∂p̂
∂x

� �γ − 1�q̂
(21)

where ux, ur, and uθ are the velocity in the axial, radial, and

circumferential directions, respectively. The coefficients A, B, C,D,

andE are functions of themean flow variables given in theAppendix.

Equations (17–21) are the basic equations governing the stability

problem. For simplicity, in the present work, we consider a purely

axial mean flow, whose spatial variation in the axial direction is

included. The formulation outlined previously, however, is capable of

incorporating spatially varying radial and circumferential mean

velocities in a straightforward manner.

A. Spectral Collocation Discretization

Spectral methods have been widely used in solving eigenvalue

problems for flow stabilities because of their fast convergence and

high accuracy. Collocation methods in particular, such as the one

employed here, tend to be more robust and adaptive than Galerkin-

type methods. To discretize Eqs. (17–21), the Fourier method is

employed for the periodic circumferential direction. The main

drawback of this method is the presence of Gibbs oscillations in

nonperiodic problems. Hence, the radial and axial directions are

discretized using the Chebyshev expansion.
For Fourier methods, the collocation points are defined by

xi �
2πi

N
; i � 0; : : : ; N (22)

Anarbitrary smooth function v�x� can then be approximated by the

discrete Fourier expansion

vK�x� �
XK
k�−K

v
⌢

ke
ikx (23)

where v
⌢

k are the unknown coefficients for k � −K; : : : ; K. The pth
derivative at the collocation point can be derived as a function of the

grid values vk�xj�:

v�p�K �xi� �
XN
j�1

e�p�i;j vK�xj�; i � 1; : : : ; N (24)

Here, e�p�i;j is the pth Fourier derivative matrix given by Peyret.
For Chebyshev methods, collocation points are defined as Gauss–

Lobatto points:

xi � cos

�
πi

k

�
; i � 0; : : : ; k (25)

TheChebyshev approximation of the function v�x� defined for x in
the range [−1, 1] is

vN�x� �
XN
k�0

͡ vkTk�x� (26)

where v̂k are the expansion coefficients, and Tk�x� is the Chebyshev
polynomial of degree k defined for x in the range [−1, 1]:

Tk�x� � cos�k cos−1 x�; k � 0; 1; 2; : : : (27)

The pth derivative at the collocation points can be derived as a

function of the grid values:

v�p�N �xi� �
XN
j�0

d�p�i;j vN�xj�; i � 0; : : : ; N (28)
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where d�p�i;j is the pth Chebyshev derivative matrix, also given by

Peyret.
In Eqs. (17–21), the unknowns ρ, ux, ur, uθ, and p are discretized

by Fourier methods in the circumferential direction and Chebyshev

methods in the axial and radial directions:

χ�x; r; θ� �
XNx

i�0

XNr

j�0

XNθ

k�1

FijkTi�x�Tj�r�eikθ (29)

where χ represents unknowns ρ, ux, ur, uθ, and p, and Fijk denotes

the unknown coefficients. According to Eqs. (24) and (28),

∂χ
∂x

����
i;j;k

� χ1x�xi; rj; θk� �
XNx

m�0

d1i;mχ�xm; rj; θk� (30)

∂χ
∂r

����
i;j;k

� χ1r�xi; rj; θk� �
XNr

n�0

d1j;nχ�xi; rn; θk� (31)

∂χ
∂θ

����
i;j;k

� χ1θ�xi; rj; θk� �
XNθ

p�1

e1k;pχ�xi; rj; θp� (32)

where i � 0; : : : ; Nx, j � 0; : : : ; Nr, and k � 0; : : : ; Nθ.

B. Domain Decomposition Method

The source term q̂ in Eq. (21) denotes unsteady heat release. We

model this term as linearly dependent on the unsteady pressure and

velocity to close the formulation:

q̂ � Rpp̂� Ruûx (33)

where Rp and Ru are complex pressure- and velocity-coupled

combustion response functions, respectively. Equation (21) then

becomes

E1ρ̂� E2

∂ρ̂
∂x

� E3ûr � E4ûθ � E5ûx � E6p̂� E7

∂p̂
∂x

� 0 (34)

The coefficients E1, E2, E3, E4, and E7 remain identical to those

appearing in Eq. (21), whereas E5 and E6 now become

E5 �
8<
:

1
�c2

∂ �p
∂x −

∂�ρ
∂x ; x ≠ x0

1
�c2

∂ �p
∂x −

∂�ρ
∂x −

1
�c2
Rp; x � x0

(35)

E6 �
8<
:
−iΩ 1

�c2
− γ �ux

�c2 �ρ
∂�ρ
∂x ; x ≠ x0

−iΩ 1
�c2
− γ �ux

�c2 �ρ
∂�ρ
∂x − �c2Rp; x � x0

(36)

where use has been made of the sifting property of the Dirac delta

function. Equation (34) is discontinuous at the flame front x � x0,
with abrupt changes of the flow properties. The coefficients in

Eqs. (17–20) are also discontinuous across the flame. A domain

decomposition method is applied, in which x < x0 is specified as one
domain, and x > x0 is another. In this method, the solutions are taken

to be continuous in each subdomain, and continuity conditions are

imposed to match the solutions at the flame interface.
Figure 2 depicts a small region dx containing the heat-release

plane. Integration of the mass conservation equation over the control

volume in the limit of dx → 0 results in

I
s
ρu · ds � 0 (37)

Equation (37) is linearized to yield

�ρ1u
0
xA � �ux1ρ

0
A � �ρ2u

0
xB � �ux2ρ

0
B (38)

Subscripts 1 and 2 indicate parameters in the upstream and

downstream regions, respectively. Subscripts A and B refer

specifically to quantities on the heat-release plane in these two

respective regions.
Integration of the momentum conservation equation in the control

volume in the limit of dx → 0 leads to

I
s
ρuu · ds�

I
s
p ds � 0 (39)

After linearization, we have

p 0
A � ρ 0

A �u
2
x1 � 2�ρ1 �ux1u

0
xA � p 0

B � ρ 0
B �u

2
x2 � 2�ρ2 �ux2u

0
xB (40)

�ρ1 �ux1u
0
rA � �ρ2 �ux2u

0
rB (41)

�ρ1 �ux1u
0
θA � �ρ2 �ux2u

0
θB (42)

where the subscripts have the same interpretation as before. The

energy conservation equation is written as

δ _Q�
I
s

�
e� p

ρ
� U2

2

�
ρu · ds � 0 (43)

where e is the internal energy,U is the velocity magnitude, and δ _Q is

the heat release within the control volume. Linearization of Eq. (43)

leads to

Fig. 2 Domain decomposition of model geometry.
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_Q 0 � �Cp
�T01 �ρ1 � �ρ1 �u

2
x1�u 0

xA � �Cp
�T01 �ux1 − Cp

�T1 �ux1�ρ 0
A

� Cp �ux1
Rg

p 0
A � �Cp

�T02 �ρ2 � �ρ2 �u
2
x2�u 0

xB

� �Cp
�T02 �ux2 − Cp

�T2 �ux2�ρ 0
B � Cp �ux2

Rg
p 0
B (44)

where

_Q 0 �
Z

L

0

q̂�x�eiΩt dx

is the unsteady heat release per unit flame area, to be distinguished

from q 0, the unsteady heat release per unit volume; T01 and T02 are

the stagnation temperatures in the left and right domains,

respectively. The stagnation temperatures have the form T0 �
T �U2∕�2Cp�. Introducing pressure- and velocity-coupled

response functions given in Eq. (33), Eq. (44) becomes

�Rv � Cp
�T01 �ρ1 � �ρ1 �u

2
x1�u 0

xA � �Cp
�T01 �ux1 − Cp

�T1 �ux1�ρ 0
A

�
�
Rp � Cp �ux1

Rg

�
p 0
A � �Cp

�T02 �ρ2 � �ρ2 �u
2
x2�u 0

xB

� �Cp
�T02 �ux2 − Cp

�T2 �ux2�ρ 0
B � Cp �ux2

Rg
p 0
B (45)

Equations (38), (40–42), and (45) constitute jump conditions

across the flame.

C. Boundary Conditions

Taking the chamber walls to be rigid, and neglecting both themean

flow and acoustic boundary layers, we have the boundary condition

∂p 0

∂r

����
r�Ro

� 0 (46)

where Ro is the duct radius. This is equivalent to specifying a zero

radial component of acoustic velocity at r � Ro In cylindrical

coordinates, this method leads to a coordinate singularity at r � 0.
Several studies have discussed methods of circumventing this

difficulty.Weuse themapping technique introduced byHeinrichs [29].
Boundary conditions are also required at the inflow and outflow

planes of the duct. At the inlet, no vorticity or entropy waves are

present. Thus,

1

R

∂u 0
x1

∂θ
−
∂u 0

θ1

∂x

����
x�0

� 0 (47)

ρ 0
1 −

p 0
1

�c21

����
x�0

� 0 (48)

Because of the convective nature of the vorticity and entropy

waves, their distributions at the outlet must be determined as a part of

the solution. Finally, the pressure at both the inlet and outlet are

specified to be acoustically open:

p 0
1jx�0 � 0 and p 0

2jx�L � 0 (49)

D. System Equations

For each domain, Nx � 1, Nr � 1, and Nt collocation points

are defined in the axial, radial, and circumferential directions,

respectively:

xi � cos
πi

Nx

; i � 0; : : : ; Nx (50)

ri � cos
πi

Nr

; i � 0; : : : ; Nr (51)

θi �
2πi

N
; i � 1; : : : ; Nt (52)

With appropriate specifications of boundary conditions at the inlet,
outlet, and wall, as well as the jump conditions across the flame,
Eqs. (17–21) can be combined and written as

�
ζ1 ζ3
ζ4 ζ2

�
|�����{z�����}

X

�
ξ1
ξ2

�
� 0 (53)

Here, ζ1, ζ2, ζ3, and ζ4 are submatrices of dimension �5�N � 1��2
withN � �Nx � 1��Nr � 1�Nt · 1. The column vectors ξ1 and ξ2 of
length 5�N � 1� contain unknowns ρ,ux,ur,uθ , andp. Equation (53)
admits a nontrivial solution only when the determinant of the matrix
vanishes:

���� ζ1 ζ3
ζ4 ζ2

���� � 0 (54)

The solution to the preceding system yields the complex frequency
Ω of the oscillating field. Once this quantity is determined, the spatial
distributions in the flowfield can be obtained from Eq. (53).
The matrix X becomes very large in the presence of spatially

nonuniform flowfields, which complicates the numerical solution of
Eq. (54). Classical methods such as Newton–Raphson iteration can
be employed, but the results are sensitive to the initialization data.
Furthermore, it is sometimes challenging to distinguish a genuine
physical mode from numerical artifacts. Sun et al. [30] addressed this
difficulty by employing an extended form of the integral winding
technique [31,32]. It was shown that the method leads to rapidly
converged physical solutions and does not exhibit strong sensitivity
to initial conditions. The approach will be employed at present.

III. Model Validation

The theoretical formulation and numerical method are validated
against analytical solutions for disturbances in a quasi-one-
dimensional duct with unsteady heat release proportional to the
acoustic velocity [33]. The duct inlet is choked, and the outlet is open.
The corresponding conditions are, respectively,

ρ 0

�ρ1
� u 0

x

�ux1
� 0; x � 0 (55)

p 0 � 0; x � l (56)

where l is the duct length. The inlet stagnation temperatureT01 is held
constant and spatially uniform at 288 K, and the pressure is 105 Pa.
Heat release occurs at the middle of the duct with a temperature ratio
T02∕T01 of 6. Two different forms of heat release are considered here:

_Q 0�t� � 0 (57)

_Q 0�t� � Cp� �T02 − �T01���ρ1u 0
x1 � ρ 0

1 �ux1� (58)
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Figure 3 shows the calculated lowest frequencies of oscillation
using the unsteady heat release described by Eqs. (57) and (58).
Excellent agreement with the results given in [33] is observed.
The present theoretical approach is capable of reproducing results

from well-studied model problems; the treatment of the jump
conditions across the flame appears to be correct.

IV. Effect of Circumferentially Nonuniform Heat
Release

With the underlying model validated, we come to the main
problem of instability in a cylindrical combustion chamber with a
circumferentially nonuniform heat source. As an example, the
classical n − τ model [34,35] is employed to model unsteady heat
release. In this formulation, the fluctuations in heat release are taken
as linearly proportional to the fluctuating velocity, with a time delay
introduced:

_Q 0�t�
�_Q

� n
u 0
x�t − τ�

�c
or _Q 0�t� � n

�_Q

�c
u 0
x�t − τ� (59)

The preceding equation indicates three possible sources of
nonuniformity in the fluctuating rate of heat release: the mean rate of
heat release, the interaction index n, and the time delay τ. The first two
effects are essentially the same because they both act as proportionality
constants for the unsteady velocity disturbance. Without loss of
generality, we may subsume n within

�_Q because only the overall
magnitude of the combustion response gain is of interest at present.
This approach is based on the theoretical formulation in the previous
sections. The effect of time delay will be investigated separately.
Appealing to the linearized unsteady heat-release model given by

Eq. (59), and postulating a time delay between velocity and heat-
release fluctuations, we may write

_Q 0�t� � Cp� �T02 − �T01��ρ1u 0
x1�t − τ� (60)

Setting �T02 � �T01�k� σ sin θ�, where k is the stagnation
temperature ratio and σ is the degree of the nonuniformity, we have

_Q 0�θ; t� � Cp�k − 1� σ sin θ� �T01 �ρ1ûx1e
−iΩτ (61)

With a uniform τ, this equation allows us to study the effect of
spatial distribution of the combustion response gain. Likewise, we
may set �T02 � k �T01 and τ � τ0�1� σ sin θ�, where τ0 is a reference
time delay, to obtain

_Q 0�θ; t� � Cp�k − 1� �T01 �ρ1ûx1e
−iΩτ0�1�σ sin θ� (62)

This form allows us to study the effect of spatial distribution of the
combustion response time delaywith a spatially uniformgain. In both
cases, σ is used unambiguously to refer to the degree of the
nonuniformity.
For the nonuniformity in unsteady heat release modeled by

Eq. (61),we shall also consider the effect of whatwill be referred to as
thermal redistribution. Given the circumferential nonuniformity in
heat-release gain, the temperature distribution downstream of the
flame will be nonuniform. In general, due to mixing and heat
conduction processes, there will be some axial length over which the

Table 1 Nomenclature for case studies

Case Description

1 Spatially uniform
�_Q

2 Circumferentially distributed
�_Q with azimuthally

nonuniform flowfield downstream of flame
3 Circumferentially distributed

�_Q with uniform flowfield
downstream of flame

Table 2 Example parameters

Example M1 l1, m k τ, ms ω α

1 0.05 0.6 4 1.5 824.7 12.4
2 0.1 0.6 3 1.5 753.6 11.6
3 0.1 0.6 4 2.0 786.7 9.52
4 0.1 0.5 4 1.0 873.2 7.06

Table 3 Grid independence study for
example 3, σ � 2

Nx Nθ Ω
25 07 781.8� i1.463
25 15 781.5� i1.330
25 21 781.5� i1.329
25 25 781.5� i1.329
21 25 781.5� i1.329
17 25 781.5� i1.329

Mal

(ω
l)

/(
c 1π

)

0.00 0.05 0.10 0.15
0.00

0.25

0.50

0.75

1.00

Dowling [33]

Eq. (57)

Eq. (58)

Present

Fig. 3 Lowest frequency of oscillation as a function of inlet Mach
number.

a)

b)

Fig. 4 Representations of a) lowest frequency, and b) associated growth

rate as a function of σ (example 1: M1 � 0.05, k � 4, l1 � 0.6, and
τ � 1.5 ms).
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temperature distribution will relax and become spatially uniform.

We consider two different situations in which 1) the temperature

distribution downstream of the flame is azimuthally nonuniform, and

a)

b)

Fig. 5 Representations of a) lowest frequency, and b) associated growth
rate as a function of σ (example 2: M1 � 0.1, k � 3, l1 � 0.6, and
τ � 1.5 ms).

a)

b)

Fig. 6 Representations of a) lowest frequency, and b) associated growth
rate as a function of σ (example 3: M1 � 0.1, k � 4, l1 � 0.6, and
τ � 2 ms).

a)

b)
Fig. 7 Representations of a) lowest frequency, andb) associated growth rate
as a function of σ (example 4:M1 � 0.1, k � 4, l1 � 0.5, and τ � 1 ms).

a)

b)

c)
Fig. 8 Distributions of pressure fluctuation amplitude (arbitrary scale)
along axial and circumferential directions for a) case 1, b) case 2, and
c) case 3 (example 3: M1 � 0.1, k � 4, l1 � 0.6, and τ � 2 ms).
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2) the temperature distribution is azimuthally uniform at every axial

location. The two cases represent respectively the extremeswhere the

characteristic time for turbulent mixing is much longer and much

shorter than the flow residence time. For comparison, we also

consider the case in which the combustion, and hence postflame

temperature, is circumferentially uniform. Table 1 summarizes

the cases.

We first investigate the baseline case, in which the gain and time

delay of the heat-release response are uniform. The results for several

different combinations of Mach number M1, length of zone 1 (l1),
stagnation temperature ratio k, and heat-release time delay τ are

shown in Table 2. The upstream stagnation temperature remains fixed

at 288 K. The growth rates for all combinations are positive,

indicating that the system is unstable.

Grid independence studies were performed by varying the number

of grid points in the axial and circumferential directions, Nx and Nθ.

The results of one such study with σ � 2 are shown in Table 3.

Convergence is rapidly achieved for the geometry and boundary

conditions under consideration.

A. Results for Nonuniform Heat-Release Gain

The effect of nonuniform heat-release gain is investigated by

performing a parameter sweep over the nonuniformity strength σ for
cases 1 and 2. Figure 4 shows the lowest frequency and growth rate as

a function of σ for example 1 in Table 2. The results are

nondimensionalized using ω0 � 528.5 Hz, the frequency found for

M1 � 0.1, k � 1, and τ � 0. As σ is increased in the two cases, the

frequencies decrease slightly, and the growth rates begin positive and

tend toward zero. The system is always unstable because the growth

rates remain positive. To maintain a realistic situation, the value of σ
must be in the interval [0, k − 1], or the downstream temperature

becomes lower than its upstream counterpart. Figure 5 shows the

lowest frequency and growth rate for example 2. In the range of σ
considered, the growth rate changes sign for case 1 but not for case 2.

Figures 6 and 7 show similar plots for examples 3 and 4, respectively.

In both figures, the growth rates for cases 2 and 3 become negative,

but the slope is steeper in Fig. 7.

The results in Figs. 4–7 indicate that, as σ increases, the frequency
of oscillation remains largely unchanged, whereas the growth

rates decrease. This knowledge may be applicable in the design

of combustors, for the attenuation of potentially deleterious acoustic

waves.

For a given frequency, the distributions of the amplitudes of

perturbation quantities can be obtained by solving the linearized

equations of motion as described in Sec. III.D. Figure 8a shows the

distributions of pressure fluctuation along the axial and circum-

ferential directions for case 1. The pressure fluctuation amplitude is

azimuthally uniform. Figures 8b and 8c show the fluctuating pressure

amplitudes for cases 2 and 3, respectively, where σ � 1.0. The
pressure fluctuations show only slight variations in the circum-

ferential direction near the heat source, indicating that nonuniformity

has little effect on acoustic pressure fluctuations.

a)

b)

c)
Fig. 9 Distributions of density fluctuation amplitude (arbitrary scale)
along axial and circumferential directions for a) case 1, b) case 2, and
c) case 3 (example 3: M1 � 0.1, k � 4, l1 � 0.6, and τ � 2 ms).

a)

b)

c)

Fig. 10 Distributions of velocity fluctuation amplitude (arbitrary scale)
along axial and circumferential directions for a) uniform case, b) case 2,
and c) case 1 (example 3: M1 � 0.1, k � 4, l1 � 0.6, and τ � 2 ms).

200 LI ETAL.

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ar

ch
 2

4,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.B
36

05
5 



Figure 9 shows density fluctuation distributions for the three cases.
The density fluctuation can be decomposed into

ρ 0 � ρ 0
s � ρ 0

a (63)

where ρs and ρa denote the entropic and acoustic components,
respectively. The entropy wavelength can be estimated by 2πux∕ω.
Here, the mean flow velocity is 141 m∕s, and ω is 786 s−1. With
these values, the entropy wavelength is about 1.1 m, which
corresponds to the wavelength scale observed in Fig. 9a. Thus, the
entropy wave dominates the density fluctuation in the region
downstream of the heat source. Figure 9b shows that the density
fluctuation amplitude varies in the circumferential direction because
of the circumferential nonuniformity of the temperature and entropy
wave strength.
Figure 10 shows the distributions of the axial velocity fluctuation

for all three cases. For case 1, the axial velocity fluctuation is
uniformly distributed in the circumferential direction. The velocity
fluctuation can be decomposed into

u 0 � u 0
v � u 0

p (64)

where uv and ua denote the vortical and acoustic contribution,
respectively. The results in Fig. 10a show that there are no vortical
waves present in the case of a circumferentially uniform heat source.
Figure 10b indicates the dominance of the acoustic part in the axial
velocity fluctuation, butwith a small-scale disturbance superimposed
on it and convected by the flow. The small-scale wavelength may be
identified with that of the entropy wave. A vortical wave is again
present in Fig. 10c, but this wave is slightly different from that in
Fig. 10b. In this case, vortical, acoustic, and entropy waves are all
coupled downstream of the flame. Starting from the conservation

a)

b)

c)
Fig. 11 Distributions of circumferential velocity fluctuation amplitude
(arbitrary scale) along axial and circumferential directions for a) case 1,
b) case 2, and c) case 3.

a)

b)

Fig. 12 Representations of a) lowest frequency, and b) associated growth

rate as a function of σ forM1 � 0.05, k � 2, l1 � 0.6, and τ0 � 2 ms.

a)

b)

Fig. 13 Representations of a) lowest frequency, and b) associated
growth rate as a function of σ for M1 � 0.05, k � 2, l1 � 0.6, and
τ0 � 3 ms.
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equations, one can show that the vortical velocity may be determined
from

∂u 0
xv

∂x
� 1

R

∂u 0
θv

∂θ
� 0 (65)

Figure 11 confirms that the circumferential component of the
vortical velocity is nonzero if the axial component of the vortical
velocity is nonzero. For case 1 shown in Fig. 11a, the circumferential
velocity is zero because no vortical waves exist, whereas in the other
two cases, there are evidently vortical waves present.

B. Results for Nonuniform Heat-Release Time Delay

The effect of circumferential distribution of heat-release time delay
is examined, while holding the gain fixed, as per Eq. (59). Here,
k � 2, l1 � 0.6, the inlet flow velocityMach number is 0.05, and the
other flow parameters are the same as those in Sec. IV.A. The
oscillation frequency and growth rate are again obtained by
performing a parameter sweep over the nonuniformity strength σ.
Figure 12–14 show the lowest frequency and corresponding

growth rate as a function of σ, with different values of k and τ0. For
time delays of 2, 3, and 4 ms with a uniform heat source, the growth
rates are positive, and the system is unstable. The growth rate reaches
its maximum value when τ0 � 3 ms. The growth rate decreases as σ
increases for each τ0, but the lowest frequency changes marginally.
At some critical value of σ, the growth rate changes sign, indicating
that the system becomes stable.

V. Conclusions

A theoretical model based on the inviscid-flow equations of motion
has been developed to predict the linear behaviors of thermoacoustic
instabilities in a Rijke tube excited by a planar, circumferentially
nonuniform heat source. A spectral collocation method was used to
solve the formulation, with a domain decomposition method used to

accommodate discontinuities across the flame zone. The effects of
circumferential distributions of the combustion response gain and time
delay were investigated separately. Results indicate that both distri-
butions play important roles in determining the stability characteristics
of the system.As the extent of the nonuniformity increases, the growth
rate decreases, in some cases significantly enough to change sign. A
nonuniform azimuthal distribution of combustion response parameters
may provide a stabilizing effect. Moreover, interactions between
acoustic waves and the nonuniform heat source produce vortical
waves, often neglected in combustion instability analyses, which may
have a significant effect on the system stability.

Appendix: LEE Coefficients

A1 � −iΩ� ∂ �ux
∂x

; A2 � �ux; A3 � �ρ (A1)

A4 �
�ρ

�r� 1� ; A5 � �ρ (A2)

A6 �
�ρ

�r� 1� �
∂�ρ
∂r

; A7 �
1

�r� 1�
∂�ρ
∂θ

; A8 �
∂�ρ
∂x

(A3)

B1 � −iΩ�ρ; B2 � �ρ �ux; B3 � 1 (A4)

C1 � −iΩ�ρ; C2 � �ρ �ux; C3 �
1

�r� 1� (A5)

D1 � �ux
∂ �ux
∂x

; D2 � −iΩ�ρ� �ρ
∂ �ux
∂x

(A6)

D3 � �ρ �ux; D4 � �ρ
∂ �ux
∂r

(A7)

D5 �
�ρ

�r� 1�
∂ �ux
∂θ

; D6 � 1 (A8)

E1 � iΩ� �ux
�ρ

∂�ρ
∂x

; E2 � − �ux (A9)

E3 �
1

�c2
∂ �p
∂r

−
∂�ρ
∂r

(A10)

E4 �
�
1

�c2
∂ �p
∂θ

−
∂�ρ
∂θ

�
1

�r� 1� (A11)

E5 �
1

�c2
∂ �p
∂x

−
∂�ρ
∂x

(A12)

E6 � −iΩ
1

�c2
−
γ �ux
�c2 �ρ

∂�ρ
∂x

(A13)

E7 �
�ux
�c2

(A14)

a)

b)

Fig. 14 Representations of a) lowest frequency, and b) associated
growth rate as a function of σ for M1 � 0.05, k � 2, l1 � 0.6, and
τ0 � 4 ms.
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